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Abetract: Domain decomposition is a class of techniques that are designed to solve elliptic problems
on irregular domains and on multiprocessor systems. Typically, a domain is decomposed into many
smaller regular subdomains and the capacitance system governing the interface unknowns is solved
by some version of the preconditioned conjugate gradient method. In this paper, we show that for a
simple model problem — Poisson’s equation on a rectangle decomposed into two smaller rectangles
— the capacitance system can be inverted exactly by fast Fourier transform. No steration 13 needed.
An exact eigen-decomposition of the capacitance matrix also makes possible a comparison of various
preconditioners that have been proposed in the literature. For example, we show that in the limit
as the aspect ratio of the two rectangles tend to infinity, the preconditioner proposed by Golub-
Mayers becomes exact, but the one proposed by Dryja does not. Both preconditioners, however,
are poor when the aspect ratio is small. -
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1. Introduction
e Domain decomposition is a class of techniques that is designed to solve elliptic problems on
i, irregular domains and on multiprocessor systems. Typically, a domain is decomposed into many
>t smaller regular subdomains and the capacitance system governing the interface unknowns is solved.
This is a relatively old idea and can be traced to the Schwarz alternating procedure [9).
- Such methods are attractive in many situations. In fact, the main reason for the resurgence of
this old idea is its obvious advantage in implementation on multiprocessor systems. Even in a se-
. quential computing environment, a natural partition of the computational domain often exists, such
o as in dividing a domain with irregular geometry into regular subregions for which fast solvers exist,
¥ or in dividing a problem with discontinous coefficients into subregions with constant coefficients.
- For this and other reasons, domain decomposition has received a lot of interest recently.

Since the capacitance system is expensive to evaluate and expensive to solve by direct methods,
many of the methods proposed so far in the literature employ some form of preconditioned conjugate
gradient (PCG) method for its solution. In each iteration, the product of the capacitance matrix
and a given vector is required, which can be evaluated by solving problems on the subdomains.
: To minimize the number of subdomain solves, it is imperative to have a good preconditioner for
the capacitance matrix. Dryja|5] is among the first to introduce such a preconditioner for two
i dimensional problems, which is in the form of a pseudo differential operator, namely, the square
root of the one dimensional discrete Laplace operator. Later, Golub and Mayers(8] proposed a
modification which significantly reduces the number of PCG iterations needed. Many other methods
have been proposed along this approach, among which we mention (1, 2, 3, 6, 7, 8].

In this paper, we show that for a simple model problem — Poisson’s equation on a rectangle
. decomposed into two smaller rectangles — the capacitance system can be inverted exactly by fast
) Fourier transform. Ne¢ PCG iteration is needed. We derive an exact eigen-decomposition of the

capacitance matrix which makes possible a comparison of various preconditioners that have been
. proposed in the literature. For example, we show that in the limit as the aspect ratio of the two
rectangles tend to infinity, the preconditioner proposed by Golub-Mayers becomes exact, but the
one proposed by Dryja does not. Both preconditioners, however, are poor when the aspect ratio is
- small.
In Section 2, we introduce the model problem and derive the capacitance system for the
interface. The eigen-decomposition of the capacitance matrix is derived in Section 3. Comparisons
. of various preconditioners are discussed in Section 4 and we close in Section 5 with some remarks
- about extensions to irregular regions and divisions into more subdomains.
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2. The Model Problem and the Interface System

Consider the following Poisson’s equation :

Au=f on O (2.1)

with boundary condition
u=g on 911

and where the domain (1 is as illustrated in Fig. 1.
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Fig. 1 The domain  and its partition

We partition {] into two subdomains 2} and {22, with a common interface {}3. We use a uniform
mesh with grid size 2 on Q with n internal grid points in the z—direction, i.e.,

1

h= o

We assume that [; and l7 are integral multiples of h, with m, internal grid points in Q,; in the
y-direction and mj internal grid points in {23, i.e.,

lh=(m+ 1)h
la=(ma+1)h
Consider a standard 5-point centered difference approximation to (2.1). If we order the unknowns

in 2 first, then those in {22 and finally those in 23, then the discrete solution vector u = (u;, u2, u3)
satisfies the following linear system

Aun 0 A uy N
0 Ap Ax wl=1r (2.2)
AT, AL, An u3 f3

where the matrices A;;, Az, and A33 correspond to the discrete Laplacian on ,, {22 and ;. and
A;3 and Agz correspond to the coupling between the unknowns in {2; and Q; with those in {13.
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Applying block Gaussian Elimination to (2.2), we obtain the following system for the interface
unknowns u3 :

Cus = f3 — ALAL N1 - AL AR f2 (2.3)
where
C = Ass - ARAL Ars - AL AT Ans. (2.4)

The right hand side of (2.3) can be evaluated by solving two subdomain problems, one each on 1,
and ;.

Note that C is expensive to evaluate because it requires 2n subdomain solves. Moreover, it is
generally dense and therefore a direct method for solving (2.3) could be prohibitively expensive.
The basic idea of domain decomposition is to solve the system (2.3) by preconditioned conjugate
gradient (PCG) methods. In applying the PCG method, one needs to evaluate the matrix—vector
product Cw for a given vector w. From (2.4), it is easily seen that each evaluation of Cw requires
the solution of two subdomain problems. For example, the product -Af:,Al'll Ajsw can be computed
by solving the discretized version of (2.1) on 1, with homogeneous right hand side (i.e., the Laplace
equation) and the boundary condition v = w on 23, and then taking the solution on the first row
of grid points above (3.

3. The Eigen Decomposition of the Capacitance Matrix

In order to understand the performance of various preconditioners for C, it is necessary to
first analyze the eigen-structure of C. It turns out that for the model problem, an exact eigen—
decomposition of C can be derived by the use of Fourier analysis.

Define the vectors w;,; = 1,2,---,n by

wj = V2h(sin jxh,sin2j7h, - -,sin nj1rh)T. (3.1)
Consider the product
Cuw; = Aywj — AAT Aiswj — AL A7} Agsw; . (3.2)

Let us consider the term —AJ, A} Ajsw; first. As mentioned earlier, this requires the solution of
the discrete Laplace equation

Apv=0 on (3.3)
with boundary condition
v=w on 3
34
and v=0 on 090,/ (3-4)
Consider a solution vector v(z,y) of the form
v(ih,kh) = dg(Wj).' = dyV/2hsin :'jrh ’ (3.5)
where0<i<n+land0<k<m+1
The boundary condition (3.4) implies that
do=1 and dpm,41 =0. (3.6)

Substituting (3.5) into (3.3), we get

(dk-1 — 2di + di41) sinijnh + di(sin(i = 1)jmh — 2sinijrh + sin(i + 1)jrh) = 0.
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It follows that the di’s satisfy the following difference equation :
dyy - (24 0j)de +dpyy =0 (3.7)
with the boundary condition (3.6) and where
Jxh

o; = 4sin’ =

The roots of the characteristic polynomial corresponding to (3.7) are

2

. ol

re =1+521+\/a,-+7’
(3.8)

2
9j 9;
and r..-l+2 o+

The general solution to (3.7) is therefore given by
di = a1t +cort

The constants c¢; and ¢z can be found by imposing the boundary conditions (3.6) which give

r:‘|+l

C] = —————————r
frrﬂ - r:lx-H

r:ll+l

and 2= 4
et

- Mt

We therefore have S
-AI3A1-1 A13Wj = dl w;
_ e - f+’7’.’“+l (3.9)
= 1-qm¥! i
where
v E —. (3.10)

By a similar computation, we have

ma+1
Te =747 2

~ AL Az Anw; = (-l_-'r'"Tr_)wj' (3.11)
i

Finally, it can easily be verified that
(Asswj); = sin(i — 1)j7h — dsinijrh + sin(i + 1)j7h,

and therefore

Apw; = (=2 - 0;)wj. (3.12)
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A
Combining (3.9), (3.11) and (3.12), we obtain (
Cw,- = ;\,-w,- ‘_.
DO
¢ where e a1 :-:‘}:'}.':;
ro —re; ! T — 747 A
ME(-2-0+ L + 2 , 3.13 AR
5 ( J ( 1- ,7;‘..,4.1 ) ( 1— 7;...,4-1 )) ( ) N \-; '
which after some simplification gives
L4am*t 144t a?
Aj=—( fn 1 :n =TI\ % + L, (3.14)
1~ 7)' 1 1~ ‘7)’ 2 4
Therefore (A}, w;) is an eigenpair of C. Since the vectors w;,j = 1,2,---,n are orthonormal, o
we have the exact eigen-decomposition of C. T
e
Theorem 3.1. For the problem (2.1), the capacitance matrix C can be decomposed as O
° ,\':::\._o.':
Cc=wawT e
L4
where e
A = diag(A, A2, -+, An), e
iy
and RS
W= (wl y W2y "y wn)- ::"*T"--:'
Furthermore, W is orthogonal. ‘
Note that the products Cw and C~!w can be computed by the Fast Fourier Transform (FFT) :::3‘:::;::
(specifically, the sine transform). It follows that for the model problem, there is no need to use :f;{:-'-::
a preconditioned conjugate gradient method for the interface system: we can solve it directly by .::.:-)(:::
FFT. P
ot s,

4. Comparison of Preconditioners
Among the preconditioners proposed so far for C, two typical ones are :

Mp = Wdiag(A\P,A?,-- -, AD)WT  (Dryja [5)) (4.1)
where
AP = -2 /57 (4.2)
and ACARNE
Mg = Wdiag(Af, 2§, -, AS)WT  (Golub-Mayers [8]) (4.3) saig
where ~Te

o?
Mo=-2\/oj+ L (4-4)

Since we know the exact eigen-decomposition of C for the model problem, we can compare the
performance of these two preconditioners. Specifically, we are interested in the spectral condition
numbers K (MB’C) and K(Mg 1C), since these play a major role in the convergence rate of the
PCG method.
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It can easily be verified that E;hj
re > 1, 0<r-.<1 and ;<1 (4.5) -
Therefore, it follows immediately from (3.14) that :
3 v
' Jim A= -2\(0;+ L. (4.6) ol
. m3z—00 o)
e In other words, for fixed h, as the “aspect ratios” of {2, and {2; tend to infinity, )\? — Aj. It follows :,':"r
."' that ‘t\.:i
-l miim K(Mg'Cc)=1. (4.7) h i
M2==00 |
Next let us consider the case where I} and I3 are fixed but A — 0 (i.e., n, m; and mg — o0). Let
the eigenvalues of M;'C be denoted by p;, where by (4.4) and (3.14)
1 1+ .7;"11’1 1+ ,7;_"2'4’1
4 b= (T me T ) (48)
~ §j j
RN
:: It can be verified that 4, is a decreasing function of 7, and therefore
S
R KMzio) =8 (4.9)
' Bn
Consider the term 7;""” in the limit as h — O for [; and I3 fixed. We have t‘_:',:_f::‘:.
.': 2 6 \‘::::::-.
. mi+l _ (1 o i1/h AN
; " (1 14+ 6) g
n -
< where RENEN
b2 5= YoLtol/4 I
s T o 1+a/2 Ll
. Making use of the fact that y : 10 =
: x _ imgq f(z .
r B—-"b(l + z2f(z)) e'mz s (4.10)
- we have . ”
- where
S, 8o = lim ——— 3
y h—0 (1 + 8)h .
:_. . xh Ao o
. = lim 2507 R
S R0 h NN
LS
< -7 o
'! Therefore, we have - ot 3
w . 1, 1+ 1472
- Ilcl-%m = 5(1 -2 T ] = e2nly (4.11)
..
-
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On the other hand, it is easy to verify that
fimon =4
and
lim 4, = 3- 2‘/-
=" 3r2s T
Therefore,
my+1 - : ma+1 =
lun Y o, and '{x_rg n 0
and so
lx_x.no pn=1. (4.12)

Combining (4.11) and (4.12) we have

Theorem 4.1. For any Iy and [y,

1 1472 14720
hm K(MGIC) = —( — ...2’1' 1- 6—2!‘3)'

Note that the limiting value of K (Mg 1C) is independent of h. Theorem 4.1 also shows that
in the limit A — 0, the rate with which K (ME’C) — 1 is exponential in /; and l3. On the other
hand, if [; and I; are small then the limiting value of K (Mg!C) is given by

- 1,1 1,
lim K(Mg'C)= E-(H*'l—),'

4 ‘2—‘0

and thus grows like fl- and 1‘;
Next, we consider K (MBIC). The eigenvalues u; of ME‘C are given by

1 l+7ml+l l+7mz+l

wi=-3(1o ,1;...“ ma-ﬂ) (4.13)

Moreover, we have

oy
1< = 1+ 2 < .
—;\_,5 +4_\/§

The following resuit follows immediately.
Theorem 4.2. For any h, l) and Iy
1 K(Mp'C)
—<—L2 <2 ,
V2 K(AIE‘C) V2
and
lim K(Mp'C)=Vv2
l.—-oo

‘z-w
h—0
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We thus see that the limiting value of K (Mp!C) is also independent of k, but this value does
not tend to unity even as l; and I3 tend to infinity. This is a fundamental limitation of Mp.

Plots of K(Mg'C) and K(Mp!C) for various values of h and [ in the case where !, = [; =l are
given in Figures 1 and 2. It is seen that when the aspect ratio is approximately one or larger, Mg
is a pretty good preconditioner for C. But for small aspect ratios, both Mg and Mp deteriorate
rapidly as preconditioners for C. It is also interesting to note that K (Mg 1C) tends to its asymptotic
value even for very large values of h and that K(Mp'C) has a smaller value for larger values of k.

Bjorstad and Widlund[1] proposed a preconditioner Mp (referred to as the “excellent method”
in their paper) which corresponds to the capacitance matrix C assuming !; = /3. By employing
special symmetry in the case where I = I3, they derived a method for computing CMg 1w exactly
for a given vector w by solving Neumann problems on the subdomains. Obviously, this method
is exact when I; = [; and in general it should be slightly better the Golub-Mayers preconditioner
because it takes into account the aspect ratio of one of the subdomains.

5. Concluding Remarks

Our analysis provides some insight into the structure of the capacitance matrix system, which
is central to the domain decomposition method. The exact eigen-decomposition of this matrix in
the simple case considered in this paper allows us to compare the performance of various precon-
ditioners. It also illustrates somewhat more clearly the origin of the pseudo differential operator
used in Dryja’s original preconditionsz and the way in which the Golub-Mayers preconditioner is
an improvement. Our analysis reveals for the first time the depeudence of the performance of these
preconditioners on the aspect ratios of the subdon:ains. Based on the results here, it is straightfor-
ward to derive a preconditioner for irregular domains waich takes into accouat che aspect ratios of
the subdomains. Furthermore, the knowledge of the eigen-decomposition of C makes it possible to
construct a direct domain-decomposed fast Poisson solver on a rectangle divided into many strips
and boxes. We referred the interested readers to [4].

Acknowledgement: The author thanks Diana Resasco for helpful discussions and producing
the plots in this paper.
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Figure 1: Dependence of K (Mg 1C) on h and aspect ratio !
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Figure 2: Dependence of K (Mp'C) on h and aspect ratio !
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